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Intruder states and their local effect on spectral statistics
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Abstract. The effect on spectral statistics and on the revival probability of intruder states in a
random background is analysed numerically and with perturbative methods. For random coupling
the intruder does not affect the GOE spectral statistics of the background significantly, while a
constant coupling causes very strong correlations at short range with a fourth power dependence
of the spectral two-point function at the origin. The revival probability is significantly depressed
for constant coupling as compared with random coupling.

1. Introduction

About a quarter of a century ago the effect of an intruder state on the spectral statistics
of a Gaussian orthogonal ensemble (GOE) was discussed [1] in the context of isobaric
analogue states in nuclei. The limited numerical possibilities revealed a very small effect
in short-range correlations. Recently the problem of intruder states has regained interest
in the context of the analysis of revival times [2] and of state sensitivity [3] of quantum
chaotic systems. The original model [1] proposes a random coupling of the intruder with
the background, quite similar to the one proposed in [3]. [2], on the other hand, proposes
a constant coupling and finds an anomalous behaviour in the revival probability.

In this paper we shall discuss differences between the two models in terms of spectral
statistics. The random coupling case is revisited and with better statistics the deviations
from the statistics of the background seems even smaller. Constant coupling on the other
hand introduces a quartic repulsion between levels, which leads, for the particular case of
the intermediate coupling chosen in [2], to a nearest-neighbour spacing distribution that is
quite similar to the one of a Gaussian simplectic ensemble (GSE); at intermediate ranges
we find a stiffness of spectral fluctuations that exceeds even that of a GSE. At long ranges
the entire effect disappears and we revert to the GOE behaviour.

Next we analyse the revival probability. On average it is significantly larger for random
coupling than for constant coupling. This is readily understood in terms of the size of the
intensity fluctuations. Furthermore, for the constant coupling case the revival probability
shows a peak, that is related to the anomalous spectral statistics mentioned above.

2. The models

The basic question we wish to address refers to the effect of an intruder state immersed into
a ‘chaotic’ background of states. This background, according to a common assumption, can
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be modelled by a GOE for a time-reversal invariant system. The open question refers to
the type of coupling between the background and the intruder. In the early paper [1] the
natural assumption was made, that the coupling matrix elements should be drawn randomly
from a Gaussian distribution, but that there should be a variable parameter to change the
strength of the coupling. We shall henceforth refer to this case as model I. The model used
in [3] is quite similar.

Model II proposed in [2] is even simpler as it chooses the same coupling matrix
element between the intruder and all background states in the basis where the background
Hamiltonian is diagonal.

We specify our models as follows: letH− be an × n GOE matrix. DiagonalizeH−
and subject the spectrum, centred at zero, to the usual unfolding procedure [4] normalizing
the average density to one. We now add the intruder state in the centre of the spectrum by
adding a row and a column to the matrix. We obtain

H =
(

0 v
v† H−

)
(2.1)

wherev = (v1, v2 . . . vn) gives the coupling between the intruder and the background states.
The two models differ in the choice of the coupling matrix elementsvi .

As mentioned above, model I requires the coupling matrix elements to be chosen from
a Gaussian distribution with widthv = √vi2. Actually our model does not coincide exactly
with the one discussed in [1] because there the intruder is placed in the original matrix.
The diagonalization of the background will not affect the coupling because an orthogonal
transformation will leave (in the limit of largen) an ensemble of vectors of Gaussian random
variables invariant. The unfolding, on the other hand, does affect the matrix, but we expect
only edge effects, which should vanish at largen.

Model II simply choosesv = constant. Atv = 2.08 we are exactly in the case of [2].

3. Spectral statistics: numerical analysis

In order to obtain information about spectral statistics we have to diagonalizeH and again
unfold the resulting spectra. The calculations were performed with ensembles of 1000
matrices of dimension 300×300 and their reliability checked by calculations with ensembles
of 800× 800 matrices. After the diagonalization of the background states the fifty lowest
and highest states were omitted to avoid finite-size effects.

This was done for both models and various values ofv. At small v we are in a
perturbative regime, forv = 1 we are in a transition zone which in model I coincides
exactly with the GOE.

For v = 2.08 we find a spreading width0 = 27 measured in terms of the average level
spacing normalized to one. We show the intensities of the intruder in the eigenstates in
figure 1(a) for model I and in figure 1(b) for model II. The results are given in both cases
for an ensemble of 10 matrices. We see that the results fluctuate widely, and more so for
model I than for model II. We may quantify this by calculating the inverse participation
ratio P I =∑201

i=1 I
2
i . HereIi = |ai |2 are the intensities of the intruder in the eigenstates as

shown in figure 1 obtained from the amplitudesai that result from the diagonalization. We
find for models I and II respectivelyP I

I = 0.036 andP I
II = 0.019, in agreement with the

impression we obtain from the figures.
To obtain a spreading width we smooth the data by performing an ensemble average

and plotting the total intensities of the intruder in states lying in a unit energy interval. The
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Figure 1. The intensity spectrumIi of the intruder plotted against the eigenenergies for an
ensemble of 10 background matrices with (a) Gaussian random coupling and (b) constant
coupling to the background. The coupling strength is in both casesv = 2.08.

result of this procedure is shown in figure 2 for model II. The fit with a Lorentzian shows
excellent agreement. For model I a similar result is obtained, but not shown.

At some larger value of0, that depends on the size of the matrix, the spreading width
will reach the dimension of the matrix and edge effects will become important. For very
large and very small couplings we shall present some perturbation results in the next section,
that will essentially explain our numerical findings.

For model I the nearest-neighbour spacing distribution remains very close to the one of
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Figure 2. Intensities as in the previous figure, but smoothed over an ensemble of 1000
background matrices showing the average value for energy bins of size 1 in the normalized
spectrum. The results forv = 1.0 are shown by× and those forv = 2.08 correspond to∗.
The dotted curve gives a Lorentzian fit with width0 = 6.5 and the broken curve the same with
0 = 27.1.

GOE in accordance with the results reported in [1]. Model II on the other hand shows a
rather surprising development from a distribution apparently rather similar to the one of GOE
for v = 1 to one resembling a GSE forv = 5 as we can appreciate in figure 3. Figure 4
shows the same distribution forv = 1 and 2.08, but restricted to 10 and 30 spacings
respectively near the centre of the spectrum, which keeps us inside the corresponding
spreading width (see figure 2). We now find the GSE-type behaviour fully developed
in both cases. Note that the agreement with the GSE is not very good so we must be
careful not to jump to conclusions. On the other hand the disagreement with a GOE is
absolutely convincing.

We next want to check the long-range spectral correlations. Here we make use of a
well known fact: as we add a single row and column to a matrix the eigenvalues of the new
matrix are intertwined between those of the old one, as displayed in figure 5. Therefore, in
both models the long-range behaviour must approach that of a GOE. Actually we expect to
find no significant deviation beyond three average level spacings.

As a consequence of the above exact result we may limit our attention to the intermediate
region. For this region a study of the Fourier transform is most profitable. Figure 6 shows
such transforms of the unfolded spectra for the same values ofv and the same energy
intervals we used for figure 4. Now we restrict our attention to correlations inside the
spreading width with the same cut-offs as above. Again we see a surprising resemblance
with the GSE. Indeed we find a very marked peak at the value 1 of the transformed variable
which we shall as usual call time. For shorter times, though, the correlation hole is even
stronger than for a GSE, thus confirming our guess that the coincidence with the properties
of this ensemble is limited.

The number variance shown in figure 7 for model II with the strong couplingv = 5
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Figure 3. Nearest-neighbour spacing distributions are shown forv = 1.0 (full line histogram)
andv = 5 (broken histogram) using an ensemble of 1000 background matrices. The long and
short broken curves show the results for GOE and GSE respectively.

Figure 4. Nearest-neighbour spacing distributions are shown forv = 1.0 restricted to 10 spacings
around zero (dotted histogram) and forv = 2.08 (full line histogram) for thirty spacings around
zero, using an ensemble of 1000 background matrices. The long and short broken curves show
the results for GOE and GSE respectively.

displays the expected features. At long range it is parallel to the GOE curve. At intermediate
range we clearly see the transitional behaviour, which we might have expected. At short
range it follows the GSE curve [4, equations (5.12) and (5.13)] rather well though the first
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Figure 5. Graphical solution of the secular equationλ =∑i vi
2/(λ− Ei) for the Hamiltonian

(2.1). The locations of the poles correspond to the unperturbed energies and the circles to the
energies of the full Hamiltonian. Note that the two alternate for any value of thevi .

dip is lower than for the GSE. Correcting a misprint in [4, equations (5.12) and (5.13)], the
number variance for the GSE is given by62

4(r) = 1
26

2
2(2r)+ 1/(4π2)[Si(2πr)]2.

4. Spectral statistics: perturbation theory and the quartic level repulsion

From many studies of spectra in the transition region [5, 6] we know that the power-
law behaviour of the spectral two-point function at the origin is most sensitive to the
characteristics of a perturbation. Thus, a GOE perturbed by the slightest GUE, changes its
behaviour immediately [5], though the effect will only be at very short range. The same
was proven for an arbitrary symmetric or Hermitian matrix perturbed by a GOE or a GUE,
respectively [6].

To understand the level repulsion in model II, we shall present an argument that
consists of three steps: first we shall show that triplets (three very close-lying states) in
the background necessarily lead, at least, to doublets (two very close-lying states) in the
perturbed system. Second we shall show that existing doublets are quite unstable and have
a small chance of surviving in model I and none at all in model II. Finally we shall see that
new doublets will only appear in model I. Thus in model II only such doublets will exist
as were generated by a triplet in the background.

The first point is quite simple. If a triplet exists in the unperurbed spectrum, two
eigenvalues of the perturbed spectrum are trapped inside due to the intertwining of levels
discussed in the previous section. Recalling the well known result, that we obtain a GSE
by eliminating every other state from a GOE [7], we find immediately that the probability
for a triplet goes asx4 for small level separationx. This constitutes an upper bound to the
power, as every triplet has to cause a doublet. Note that this result is non-perturbative.

The second point involves a longer perturbation argument. We consider an energy
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Figure 6. The full curve shows the Fourier transform of the spectrum for model II. In (a) for
v = 1.0 restricted to 10 states around zero; in (b) for v = 2.07 and restricted to 30 states around
zero. The transforms for GOE and GSE are given by long and short broken curves respectively.

doubletE1, E2, coupled weakly to the intruder state. Since we expect the doublet to couple
mainly with itself and, of course, with the intruder we may disregard all other states. Thus
we consider the matrix( 0 v1 v2

v1 E1 0
v2 0 E2

)
(4.1)

where we set 0< E1 < E2. The secular equation for the eigenvalues of this matrix can be
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Figure 7. The number variance forv = 5.0 for the whole spectrum of model II (full curve).
The results for GOE and GSE are given by long and short broken curves respectively.

written as

λ = v2
1

λ− E1
+ v2

2

λ− E2
. (4.2)

We are interested in the eigenvalues near theE1–E2 doublet. We therefore introduce the
variablesy = λ−E1 andδ = E2−E1. With these new variables, the last equation can be
rewritten as

y + E1 = v2
1

y
+ v2

2

y − δ . (4.3)

Now comes the crucial approximation: since the energiesE1 andE2 are a close doublet
and since the perturbation due to the intruder is weak, it is clear that neither the eigenvalue
close toE1 nor that close toE2 will be very far fromE1. We can therefore always neglect
y with respect toE1, so that the last equation reduces to

E1 = v2
1

y
+ v2

2

y − δ (4.4)

which yields an equation of second degree, with two solutionsy1 and y2. For these one
readily finds

(y1− y2)
2 = (E1+ v2

1/E1− E2− v2
2/E2)

2+ v
2
1v

2
2

E2
1

. (4.5)

This equation is easy to interpret: in a first approximation, bothE1 and E2 move
independently by an amountv2

i /Ei , due to their coupling to the intruder state. If this
motion does not bring them any nearer to each other than|v1v2/E1|, nothing more happens
and this result, obtained from ordinary perturbation theory, remains valid. On the other
hand, if the eigenvalues are closer to each other than|v1v2/E1|, then higher orders of
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perturbation theory cause the eigenvalues to interact and they wind up at a distance larger
than |v1v2/E1|.

Furthermore no doublets can be formed at distances shorter than|v1v2/E1|. It follows
that, for constantvi , no new doublets can be formed at all. For distributions of thevi such
as the Gaussian, which allow a finite probability for very small values of thevi , it is possible
to form new doublets from energy levels which were separated before the coupling. In the
above example, this occurs whenv1 � v2. ThenE1 moves a great distance towardsE2

and the repulsion does not occur unless the distance is extremely small.
Thus in model I new pairs are created and again destroyed in terms of typical avoided

crossings and we may reasonably expect to retain the linear dependence of the GOE two-
point function. In model II, on the other hand, such avoided crossings will not occur and
the fourth power limit which we obtained from the triplet will correspond to the actual
distribution.

Note that the same argument can readily be used for an intruder with constant coupling to
a Poisson, GUE or GSE background, to derive a power law ofx1, x7 andx13, respectively.
Points two and three of the above argument transfer immediately and the triplet probabilities
for these ensembles are dominated at short range by the power laws given above.

Our argument is perturbative and thus basically will hold for small couplingsv or for
distances outside the spreading width. Figure 8 shows the level spacing distribution for
v = 2.08 for both models at energies taken in the wings of the spreading range of the
intruder and we find the expectedx and x4 behaviour for models I and II, respectively.
Figure 9 shows the corresponding results for spacings taken outside the spreading. Note
that in the latter case the expected transition to GOE like behaviour for model II occurs at
very small level separations.

The fact that the figures of the previous section confirm this behaviour even inside the
spreading width, goes beyond the direct scope of our argument, but is in keeping with the

Figure 8. The histograms give the nearest-neighbour spacing distributions for models I and II
taken in the wings of the spreading range. Model I agrees well with the GOE result (chain
curve) and model II with the GSE (double dot chain curve).
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Figure 9. Same as figure 8 but taken outside the spreading range. Note the transition behaviour
from GOE to GSE for model II betweenx = 0.15 andx = 0.25.

experience discussed above, that perturbative features at short range tend to extend their
range as the perturbation grows. The deviations from GSE at intermediate and long range
are equally unsurprising as there is no theoretical reason for true GSE behaviour.

In the limit of very strong interaction for model II the above argument certainly no longer
applies. We actually revert to the GOE except at the edges of the spectrum. Essentially the
only effect of the intruder is to expel one state at each end of the spectrum, while leaving
the remainder with an unchanged statistic.

5. The revival probability

Model II was proposed in the context of a revival analysis [2], in which a numerical
calculation of the revival probability turned out to show some disagreement with a simple
theoretical estimate, that used GOE spectral statistics. We shall proceed to show that such
discrepancies are not resolved if we use the correct spectral statistics.

We recall that the revival probability for the intruder stateψ(0) is defined as

P(t) = |〈ψ(0)|ψ(t)〉|2. (5.1)

If the amplitude of the intruder in theith eigenstate of the full system isai , its time evolution
is ψ(t) =∑j aj exp(iEj t). We thus obtain for the revival

P(t) =
∑
j,k

|aj |2|ak|2 exp(i(Ej − Ek)t)

=
∑
i

|ai |4+
∑
j<k

|aj |2|ak|2[exp(i(Ej − Ek)t)+ c.c.]. (5.2)

For an intruder with Gaussian distributed amplitudes, we recover GOE properties and
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the ensemble average for this expresion has been evaluated to yield

〈P(t)〉 = 3

n+ 2
− b(t)

n
≈ 1

n

[
3− b

(
t

2π

)]
(5.3)

for t > 0. Heren is the dimension of the matrix andb(t) the usual form factor [4]. As we
have seen that in model I the intruder does not significantly affect statistics, we may hope
that we can extend the usefulness of expression (5.3) to this model.

Equation (5.3) is not valid fort = 0 asP(0) = 1.0. Indeed the finite spreading width
0 will dominate the short-time behaviour. We shall heuristically include the effect of the
spreading width0 by adding a short-time term e−0t and by estimating the effective number
of participating states. For this purpose we assume a smooth distribution of intensitiesIi
along the Lorentzian of width0 and calculate the inverse participation ratio

∑
i |Ii |2 ≈ neff.

The resulting effective number of levels isneff = π0 in agreement with [2]. We thus obtain

〈P(t)〉 ≈ e−0t + 1

π0

[
3− b

(
t

2π

)]
. (5.4)

This result clearly contains errors of the order 1/n for short times but we may hope that
they are not important as compared with the exponential term.

We performed numerical calculations both for models I and II by diagonalizing the
corresponding Hamiltonians for each member of an ensemble and evaluatingP(t) by using
equation (5.2) directly for a range of values oft . The ensemble average was simply
performed by averaging the results at each value oft . The results for model II agree with
those obtained in [2] by other techniques.

We compare in figure 10 the theoretical result of equation (5.4) with the numerical one
for model I and find excellent agreement even for intermediate times, for which this is not
guaranteed by our argument.

Figure 10. The revival of the intruder calculated according to equation (5.2) for models I and
II. The theory according to equation (5.4) is given by the short broken curve and agrees well
with model I. The theory of [2] is given as a long broken curve.
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The theoretical curve of [2] is also included in the picture and we find as reported in
this reference a very partial agreement with model II. Note that the theoretical result of [2]
corresponds to equation (5.4) if we replace the 3 by a 1. This would, in our derivation,
correspond to an absence of fluctuations in figure 1(b). The n-dependence of corrections
due to fluctuations is discussed in [2] but they are not evaluated. We thus identify two
sources of disagreement for model II with theory: first, inside the spreading width the form
factor is not that of a GOE and second, the inverse participation ratio must be greater than
the inverse of the effective number of levels, though smaller than for a GOE.

The similarity of our result with that of [2] may tempt us to use a semi-empirical formula
of the same type, where both the inverse participation ratio and the form factor are taken
from the numerical experiment. Such a formula turns out to be in disagreement with the
numerical result for model II. In particular the very low values of revival neart ∼ 0.5 cannot
be explained. This indicates that the factorised structure of the equation is inadequate and
is therefore a sign of strong correlations between energies and amplitudes that go beyond
the general Lorentzian shape. Note though that the Fourier transform we found inside the
spreading width gives a qualitative understanding of the maximum in revival neart = 2π .

6. Conclusions

This paper analysed the effect of an intruder state on a chaotic background represented by
an unfolded spectrum with GOE fluctuations. We consider both a random Gaussian and a
constant coupling to this background. For the random coupling case we retrieve standard
GOE behaviour for spectral statistics, inverse participation ratio and revival probability
of the intruder, by taking into account the spreading of the intruder in a straightforward
way. For constant coupling, on the other hand, we found inside the spreading width a
surprising GSE-like behaviour at short distances and a GOE behaviour at long range. We
could give exact proof for the latter and a perturbative derivation for the former. As far as
the inverse participation ratio is concerned we find an intermediate value corresponding to
non-vanishing fluctuations of the intensities as seen in figure 1(b). A theoretical evaluation
is missing.

Concerning the revival probability of the intruder we obtain some qualitative
understanding from the Fourier transforms of the spectrum and the inverse participation
ratio, but the data definitively indicate important coupling between intensities and energy
eigenvalues. A theoretical understanding is again missing.

It is interesting to note that the results of sections 3 and 5 are unaffected if we provide
the constant coupling with a random sign. A possible candidate for an intruder with near
constant coupling but random signs could be an isobaric analogue state in a nucleus, where
the T< states are isolated resonances forming the background, and theT> analogue state
is the intruder. A separate study is necessary to show whether the matrix elements are
sufficiently constant to cause the short-range effect discovered in this paper. A further
question is whether there are sufficient data to see this effect in experiment.
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